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Abstract. Assuring safety in complex technical systems is a crucial is-
sue in several critical applications like air traffic control or medical de-
vices. We present a preliminary framework based on argumentation for
assisting flight controllers to reach a decision related to safety constraints
in an ever changing environment in which sensor data is gathered at real
time.

1 Introduction

Assuring safety in complex technical systems is a crucial issue [1] in several
critical applications like air traffic control or medical devices. Air traffic con-
trol (ATC) is a service provided by ground-based controllers who direct aircraft
on the ground and through controlled airspace, providing advisory services to
aircraft in non-controlled airspace. The primary purpose of ATC is to prevent
collisions, organize the flow of traffic, and provide information and support for
pilots. In this context, accidents are mainly produced by human errors. Such
accidents can be avoided by verifying the safety for the ATC system in a logical
manner in order to produce support for human air controllers to make rationally
justified decisions.

Argumentation [2] provides a sophisticated mechanism for the formalization
of common-sense reasoning. Intuitively, an argument can be thought of as a co-
herent set of statements that supports a claim. The ultimate acceptance of an
argument will depend on a dialectical analysis of arguments in favor and against
the claim. Defeasible Logic Programming (DeLP) [3] is a reasoning framework
based on logic programming and defeasible argumentation with a working im-
plementation.1

Safety assurance and compliance to safety standards-based methods of certi-
fication such as DO-178B [4] may prove to be a real challenge when having to deal

1 See http://lidia.cs.uns.edu.ar/delp client/.
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with adaptive systems, in which it is necessary to handle continuous changes. As
traditional methods are not very effective in this, argument-based safety cases
offer a plausible alternative basis for certification in these fast-moving fields. Our
hypothesis is that argumentation can be used to assure safety in complex critical
systems by providing a way of assisting end-users to reach rationally justified
decisions. In this paper we propose a decision support system for an ATC based
on DeLP. Landing criteria for assuring safety in complex landing situations are
modeled as a DeLP program. Prospective decisions are presented to the system
as queries. Given a query representing a decision concerning a safety requirement
w.r.t. such a set of criteria, the DeLP engine will engage in an introspective di-
alectical process considering pros and cons against a decision and will answer a
recommendation in the case that there is a warrant for the query. Besides, as
in a real-time environment in which border conditions may vary from second
to second, decisions cannot be taken with respect to a static DeLP program.
Thus, we present a preliminary framework for making recommendations based
on sensor input regarding the values of the parameters characterizing the safety
problem.

Outline: In Sect. 2 we present the fundamentals of Defeasible Logic Program-
ming. In Sect. 3 we present a framework for performing safety verification in an
ATC system along with a case sudy. In Sect. 4 we discuss how to extend the
framework for performing continuous reasoning on sensor feed regarding a safety
decision. In Sect. 5 we review related work. Finally, in Sect. 6 we conclude.

2 Defeasible Logic Programming

Defeasible Logic Programming (DeLP) [3] provides a language for knowledge rep-
resentation and reasoning that uses defeasible argumentation to decide between
contradictory conclusions through a dialectical analysis, and providing a good
trade-off between expressiveness and implementability for dealing with incom-
plete and potentially contradictory information. In a DeLP program P = (Π,∆),
a set Π of strict rules P ← Q1, . . . , Qn (which encode certain knowledge), and
a set ∆ of defeasible rules P −≺ Q1, . . . , Qn (which encode knowledge with pos-
sible exceptions) can be distinguished. An argument 〈A, H〉 is a minimal non-
contradictory set of ground defeasible clauses A of ∆ that allows to derive a
ground literal H possibly using ground rules of Π. Since arguments may be in
conflict (concept captured in terms of a logical contradiction), an attack rela-
tionship between arguments can be defined. To decide between two conflicting
arguments, we will use generalized specificity — a syntactic criterion that prefers
arguments more informed and arguments based on shorter derivations. If the at-
tacking argument is strictly preferred over the attacked one, then it is called
a proper defeater. If no comparison is possible, or both arguments are equi-
preferred, the attacking argument is called a blocking defeater. To determine
whether a given argument A is ultimately undefeated (or warranted), a dialec-
tical process is recursively carried out, where defeaters for A, defeaters for these
defeaters, and so on, are taken into account. Given a DeLP program P and a
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query H, the final answer to H w.r.t. P is based on such dialectical analysis. The
answer to a query can be: Yes (when there exists a warranted argument 〈A, H〉),
No (when there exists a warranted argument 〈A,∼H〉), Undecided (when nei-
ther 〈A, H〉 nor 〈A,∼H〉 are warranted), or Unknown (when H does not belong
to P).

3 Safety Verification for Air Traffic Control Systems

We now present a safety verification framework for an ATC system based on
DeLP.

Definition 1 (Safety verification system). A safety verification system V
is a pair (P,S) where P is a DeLP program establishing logical criteria for
assuring safety and S is a set of literals containing sensor information of the
environment. The language LV of the safety verification system is the set of all
literals in P ∪ S.

Definition 2 (Prospective safety decision). Let V = (P,S) be a safety
verification system. A prospective safety decision is a literal in LV .

Definition 3 (Safety recommendation). Let V = (P,S) be a safety verifi-
cation system and D be a prospective safety decision. A safety recommendation
for D is either one of:

– Perform: If there is a warranting argument for D w.r.t. the DeLP program
P ∪ S.

– Do not perform: If there is a warranting argument for ∼D w.r.t. the DeLP
program P ∪ S.

– Unable to Reach Recommendation: When there is neither a warranted argu-
ment for D nor ∼D w.r.t. the DeLP program P ∪ S.

– Not Applicable: Whenever D does not belong to LV .

Example 1. In Fig. 1 we present an example of a DeLP program P for defining
a safety verification system for an ATC. The main system safety verification is
clearance for landing denoted by the literal clearance(ID,A, T ), meaning that
flight ID has clearance to land on runway A at time T . The meaning of the
safety criteria are as follows: Flight ID usually has clearance to land on runway
A at time T if ID is not forbidden to land on runway A at time T and viceversa.
A flight has clearance to land at time T if it has had a critical failure T . It is
allowed to land at time T on runway A if the wind is calm on runway A at time
T and it is forbidden if it is windy at that time. A runway is windy at time T
if the wind speed is greater than 15 knots, it is calm otherwise. Exceptionally
a flight is allowed to land on a windy runway if it has fuel trouble. A flight is
considered to have fuel trouble if its remaining fuel allows it to fly less than 15
minutes, otherwise the flight has no fuel trouble.

In Fig. 2 we present sensor information S for the rules presented above.
There is one runway called r01 and only one flight called f701 . We will consider
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clearance(ID, A, T ) −≺ ∼forbidden(ID, A, T ), runway(A), flight(ID).
∼clearance(ID, A, T ) −≺ forbidden(ID, A, T ), runway(A), flight(ID).
clearance(ID, A, T ) ← critical failure(ID, T ).
∼forbidden(ID, A, T ) −≺ calm(A, T ).
forbidden(ID, A, T ) −≺ windy(A, T ).
∼forbidden(ID, A, T ) −≺ fuel trouble(ID, T ).
∼forbidden(ID, A, T ) −≺ fuel trouble(ID, T ), windy(A, T ).
windy(A, T ) −≺ wind speed(A, S, T ), S > 15.
calm(A, T ) −≺ wind speed(A, S, T ), S < 15.
fuel trouble(ID, T ) −≺ remaining fuel(ID, R, T ), R < 15.
∼fuel trouble(ID, T ) −≺ remaining fuel(ID, R, T ), R > 15.

Fig. 1. Logical criteria for assuring safety in an air control system

the safety verification system (P,S), we will introduce sensor information and
show how the proposed approach can recommend a decision to a human traffic
controller based on a dialectical analysis performed on P ∪ S.

At time 0, for flight f701 we only have its identification as there is only
a fact flight(f701 ) to consider. In this case the safety recommendation for the
prospective decision clearance(f701 , r01 , 0) is Unable to Reach Recommendation
as DeLP answer for query clearance(f701 , r01 , 0) is Undecided because no argu-
ment can be built for that literal from the information available.

At time 10, for flight f701 we know that the wind speed at runway r01 is 3
knots. The prospective decision represented by the literal clearance(f701 , r01 , 10)
has Perform as safety recommendation because there exists a warranting argu-
ment A1 for it:

A1 =

 clearance(f701 , r01 , 10) −≺ ∼forbidden(f701 , r01 , 10), runway(r01), flight(f701)
∼forbidden(f701 , r01 , 10) −≺ calm(r01 , 10)
calm(r01 , 10) −≺ wind speed(r01 , 3, 10), 3 < 15

 ,

meaning that flight f701 has permission to land on runway r01 because it is a
calm runway as the wind speed is only 3 knots at time 10.

When we consider the situation for flight f701 at time 20, we see that wind
speed at runway r01 is 30 knots (making it very windy). Then the safety recom-
mendation for the prospective decision clearance(f701 , r01 , 20) is Do not perform
as there is an argument 〈A2,∼clearance(f701 , r01 , 20)〉 where:

A2 =

∼clearance(f701 , r01 , 20) −≺ forbidden(f701 , r01 , 20), runway(r01), flight(f701)
forbidden(f701 , r01 , 20) −≺ windy(r01 , 20)
windy(r01 , 20) −≺ wind speed(r01 , 30, 20), 30 > 15

 .

The next case shows how having information about fuel reserve comes into
play. We see that at time 30, at runway r01 wind speed is under 16 knots and the
flight f701 has fuel for 60 minutes, which is plenty of time. In this case, in regards
to the prospective decision clearance(f701 , r01 , 30) the safety recommendation
of the system is Do not perform as an argument similar to the previous situation
can be built: 〈A3,∼clearance(f701 , r01 , 30)〉 where

A3 =

∼clearance(f701 , r01 , 30) −≺ forbidden(f701 , r01 , 30), runway(r01), flight(f701)
forbidden(f701 , r01 , 30) −≺ windy(r01 , 30)
windy(r01 , 30) −≺ wind speed(r01 , 40, 30), 40 > 15

 .

Notice that in this case, the information about the remaining fuel is apparently
not taken into account but it actually is as we show in the next case.
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When we consider the case of flight f701 , at time unit 40, there is a wind
speed of 16 knots at runway one, which is not much but it is over the safety
limit of 15 knots. Besides f701 has only 12 minutes left of fuel. We will see
that the answer for the query clearance(f704, r01, 40) is obtained through an
interesting dialectical process modeled by the dialectical tree presented in Fig. 3
making the recommendation to be Perform. We can see that there is an argument
〈A6, clearance(f701 , r01 , 40)〉 (expressing that the plane can land because it has
fuel trouble having only 12 minutes left) which is defeated by another argument
〈B6,∼clearance(f701 , r01 , 40)〉 (saying that the plane cannot land because it is
windy) that in turn is defeated by 〈C6,∼forbidden(f701 , r01 , 40)〉 (that says that
the plane can land whenever it has fuel trouble in windy conditions), thus rein-
statingA6; on the other handA6 is also defeated by 〈D6, forbidden(f701 , r01 , 40)〉
(arguing that the plane should be forbidden to land because of windy conditions)
which in turn is also defeated by C6 where:

A6 =

 clearance(f701 , r01 , 40) −≺ ∼forbidden(f701 , r01 , 40), runway(r01), flight(f701)
∼forbidden(f701 , r01 , 40) −≺ fuel trouble(f701 , 40)
fuel trouble(f701 , 40) −≺ remaining fuel(f701 , 12, 40), 12 < 15

 ,

B6 =

∼clearance(f701 , r01 , 40) −≺ forbidden(f701 , r01 , 40), runway(r01), flight(f701)
forbidden(f701 , r01 , 40) −≺ windy(r01 , 30)
windy(r01 , 40) −≺ wind speed(r01 , 16, 40), 16 > 15

 ,

C6 =

∼forbidden(f701 , r01 , 40) −≺ fuel trouble(f701 , 40), windy(r01 , 40)
fuel trouble(f701 , 40) −≺ remaining fuel(f701 , 12, 40), 12 < 15
windy(r01 , 40) −≺ wind speed(r01 , 16, 40), 16 > 15

and

D6 =

{
forbidden(f701 , r01 , 40) −≺ windy(r01 , 40)
windy(r01 , 40) −≺ wind speed(r01 , 16, 40), 16 > 15

}
.

At time unit 50, we see that when there is a critical failure on the plane,
the system will allow it to land independently of runway conditions. So the
safety recommendation for the prospective decision clearance(f701 , r01 , 50) will
be Perform as a warranted argument 〈∅, clearance(f701 , r01 , 50)〉 can be found,
which is based on the derivation using the strict rule clearance(f701 , r01 , 50)) ←
critical failure(f701 , 50).

Notice that at time unit 60, a richer situation arises: In this scenario the flight
has a critical malfunction at time 60 and sensor information indicates that wind
speed at runway r01 is also 100 knots at that time. The safety recommendation
for the safety prospective decision clearance(f701 , r01 , 60) is Perform based on
the evidence that the DeLP answer for clearance(f701 , r01 , 60) is Yes as there
is an empty warranting argument. However notice that in this case the DeLP
answer for windy(r01 , 60) is Yes and the answer for forbidden(f701 , r01 , 60) is
also Yes, but in this case the argument for ∼ clearance(f701 , r01 , 60) based on
the defeasible rule ∼ clearance(f701 , r01 , 60) −≺ forbidden(f701 , r01 , 60) is not
activated as according to the specificity criterion for comparing arguments it is
weaker than the argument for clearance(f701 , r01 , 60) based on the strict rule
clearance(f701 , r01 , 60) ← critical failure(f701 , 60), so the latter is preferred.
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runway(r01). flight(f701).
wind speed(r01, 3, 10). wind speed(r01, 30, 20).
wind speed(r01, 40, 30). remaining fuel(f701, 60, 30).
wind speed(r01, 16, 40). remaining fuel(f701, 12, 40).
critical failure(f701, 50). wind speed(r01, 100, 60).
critical failure(f701, 60).

Fig. 2. Sensor information for the air control system

〈A6, clearance(f701, r01 , 40)〉U

〈D6, forbidden(f701, r01 , 40)〉D

〈C6,∼forbidden(f701, r01 , 40)〉U

〈B6,∼clearance(f701, r01 , 40)〉D

〈C6,∼forbidden(f701, r01 , 40)〉U

Fig. 3. Dialectical tree for the query clearance(f701, r01 , 40)

4 Continuous Reasoning with DeLP

We now extend the framework presented above for producing recommendations
to assist in deciding about critical safety issues of an air traffic control system.
The scenario presented in Ex. 1 showed that DeLP can be used to characterize
a recommender system for assisting human air-traffic controllers. However, in a
real-time environment where border conditions do not remain fixed as implied by
the use of an static DeLP program, the framework presented in Sect. 3 is clearly
insufficient. Because of this, we now extend it for including sensor information
that continuously feeds the DeLP system. In this regard, we show how the DeLP
system can produce a stream of recommendations in real time according to the
input fed to the system.

Definition 4 (Data stream). A data stream S(key, τ) = 〈v1, v2, . . . , vi, . . .〉
is an infinite list of values vi for the given key updated at time step τ . When a
sensor fails to collect a sample measure at a certain time unit, the value ⊥ is
added to the data stream.

Example 2. In the scenario defined by the DeLP program P in Ex. 1, we can con-
sider that there are three streams of sensor data: Swind speed(r01, 10), Sremaining fuel

(f701, 10) and Scritical failure(f701, 10). The first stream provides the wind speed
at runway r01 at each time unit, the second stream updates the remaining
fuel for the flight f701 also at each time unit, and the third informs about
a critical failure situation in flight f701. In the running example, the stream
Swind speed(r01, 1) = 〈3, 30, 40, 16,⊥, 100〉 will generate the DeLP facts presented
in Fig. 2, namely wind speed(r01, 3, 10), wind speed(r01, 30, 20), wind speed(r01, 40,

30), wind speed(r01, 16, 40) and wind speed(r01, 100, 60).

As according to Fig. 2, we only have information for the remaining fuel at
time units 30 and 40, the stream Sremaining fuel(f701, 10) = 〈⊥,⊥, 60, 12,⊥,⊥〉 is
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stored as the DeLP facts: remaining fuel(f701, 60, 30) and remaining fuel(f701, 12,

40). Regarding the critical failure sensor at flight f701, the stream Scritical failure

(f701, 10) = 〈⊥,⊥,⊥,⊥, yes, yes〉 will produce the facts: critical failure(f701, 50)

and critical failure(f701, 60).

A continuous query is a query executed continuously using data arriving from
sensors. Formally:

Definition 5 (Continuous query). A continuous query CQP = (Q,S, τ),
is a query Q posed to a DeLP program P executed continuously at a specified
time-step τ against data arriving from a set S of sensor streams.

Example 3. The continuous query

CQP = (clearance, {Swind speed(r01, 10), Sremaining fuel(f701, 10), Scritical failure(f701, 10)}, 1)

investigates the validity of the clearance predicate at each time unit, based on
the wind speed at runway r01, the remaining fuel of flight f701 and the critical
failure sensor at flight f701. At time instance τ = 1, the query is computed
based on the data that arrive at each time step from the two input streams.

A continuous query generates an output stream of safety decisions, which are
computed based on the semantics of DeLP.

Definition 6 (Chain of safety recommendations). A chain of safety recom-
mendations SD(p1, . . . , pn, τ) is a stream of D prospective safety decisions about
parameters p1, . . . , pn starting at time unit τ and annotated with the time-step
in which D is valid.

Example 4. Recalling the answers of the system presented at Ex. 1, the chain of
safety recommendations would be:

Sclearance(f701, r01, 0) = 〈(Unable to Reach Recommendation, 0), (Perform, 10),
(Do not perform, 20), (Do not perform, 30)
(Perform, 40), (Perform, 50), (Perform, 60)〉.

5 Related Work

Nakamatsu et al. [5] propose a theoretical framework for a logical safety ver-
ification for an air traffic control system based on a paraconsistent logic pro-
gram called an Extended Vector Annotated Logic Program with Strong Negation
(EVALPSN for short). EVALPSN uses numerical weights for assigning credibil-
ity to facts, as our approach relies on DeLP and on argument construction and
a dialectical process for determining which conclusions, our solution relieves the
knowledge engineer of the burden of weighing his information. Capobianco et al.
[6] define ODeLP which allows to use DeLP in a dynamic environment based on
facts obtained through observations. ODeLP allows to precompile the status of
arguments in order to compute warrants more efficiently. Our approach could
benefit from ODeLP in the case of programs formed only by defeasible rules
because ODeLP does not accept strict rules as needed by our proposal.
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Goron et al. [7] present an application of argumentation for supporting au-
tonomous decision making performed by an unmanned aerial vehicle (UAV),
extending its use for hybrid logics model update. Argumentation theory is con-
sidered for assisting the process of updating a Kripke model, which is viewed as a
snapshot of the world that they are interested in. When the model fails to verify
a property, a DeLP program is run to analyze the current state and deciding
on an update operation of the model. Unlike our solution, a Kripke structure is
used to capture the operation of the UAV, and DeLP is applied in repairing the
initial model such as to comply to safety regulations. In our case, DeLP is used
to assist a human controller.

6 Conclusions and Future Work

We presented a preliminary framework for implementing a recommender system
for an air traffic control used for assisting flight controllers to reach rational
decisions related to a safety constraint. We also consider how to adapt DeLP to
an ever changing environment in which information sensor is gathered at real
time, with a running scenario. Much work remains to be done such as exploring
properties of the approach along with the feasibility of implementation as a real-
world application. In that regard, infinite lists can be processed with a functional
programming approach based on lazy evaluation as suggested by [8].
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6. Capobianco, M., Chesñevar, C., Simari, G.: An argument-based framework to model
an agent’s beliefs in a dynamic environment. In: AAMAS 2004. (July 2004) 163–178
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