
Modelling Long-Lived Health Care Workflow
Transactions

Christopher Meli and George Fernandez?

eHealth Education
c.meli@ehe.edu.au g.fernandez@ehe.edu.au

Abstract. Due to the increasing automation of health care, health care
workflows have received significant attention over the last few years. This
paper discusses the differences between typical business processes and
health care workflows, and introduces a layered architecture suitable for
health care workflow models. We present a rules-based approach for mod-
elling long-lived health care workflow transactions, and we discuss a set
of transactional integrity rules specific to the workflow patterns found in
traditional business processes and show how these rules can be used to
design health care workflows with transactional characteristics.

Keywords: health care, workflow, transaction, distributed, business pro-
cess

1 Introduction

The theory and practice of database transactions is based on the fact that trans-
actions are short-lived. This is because the implementation mechanisms—such
as locking or time-stamping—do not work properly if the transaction is not
quickly committed to permanent storage and the database made consistent again
in a very short time. In contrast, orchestration and choreography of long-lived
processes—such as health care and e-commerce flows—often require human or
remote systems intervention and may span minutes, hours or days. As these pro-
cesses are typically distributed in nature, involving multiple services in different
organisations, it is not possible to lock records for the required period of time,
or time-stamp remote operations, to implement the standard ACID database
properties.

Existing methodologies for long-lived transactions extend the traditional
transactional model by relaxing the ACID properties, however they do so to
a predefined level often making them impractical [12]. Furthermore, these mod-
els are considered limited because of their database-centric nature [1].

? Part of this work has been based on unpublished work by Madasamy Madasamy and
George Fernandez [13]

15th Argentine Symposium on Software Engineering, ASSE 2014

43 JAIIO - ASSE 2014 - ISSN: 1850-2792 - Página 105



2

In the world of health care there is a need to ensure correct workflow comple-
tion, because patients must receive proper complete treatment and all relevant
stakeholders must remain informed of any workflow abortions or failures. Thus,
in this work we include a discussion of the HCWF elements that need special
attention when compared to standard workflows, and propose a set of transac-
tional integrity rules to model long-lived health care workflow transactions.

In particular, this work contributes:

– A layered architectural model applicable for long-lived health care workflow
transactions

– A set of integrity rules suitable for modelling long-lived health care workflow
transactions

The structure of this paper is as follows:
First in Section 2, we discuss the background of this research, specifically

aspects of health care that need to be addressed to make transactions viable for
health care workflows and we discuss a potential architecture suitable for our
model. Next in Section 3, we present prior related work in the areas of standard
and long-lived transactions. In Section 4, we present the necessary definitions
and constraints for a workflow model oriented to the area of health care, with
transactional characteristics such as commit and abort protocols, backward and
forward recovery, and long-lived transactions to implement transactional health
care workflows. We discuss the necessary characteristics of the activities and
define a set of rules that may be used to validate the transactional consistency of
the workflow based on our model. In addition we present a motivating example.
In Section 5, we conclude.

2 Background

A standard workflow in its simplest form is defined as “a collection of tasks
organised to accomplish some business process” [8]. A workflow specification
outlines how such a workflow instance is coordinated, and has a number of
different perspectives: control-flow, which defines the flow and order of task
execution [19]; data, which defines the flow of data from one activity to the next
[19]; resource, which defines the actors responsible for executing these activities
[19]; and operational, which defines the action an executing activity performs
[19].

In distributed workflow management systems the term orchestration is often
used to indicate the centralised management of a workflow execution [17]. That
is, a single process knows the activity execution schedule and is in control of all
workflow activities.

Health Care Workflows (HCWF) are a typical example of process orchestra-
tion. They are comprised of many activities such as initial visits, derivation to

15th Argentine Symposium on Software Engineering, ASSE 2014

43 JAIIO - ASSE 2014 - ISSN: 1850-2792 - Página 106



3

Fig. 1. A Layered Architecture

specialists, requests for analyses and collation of results, conclusion of a health
care plan, return visits, etc1. As these operations are usually implemented in
different systems, HCWF workflows are based on the execution of distributed
services housed on heterogeneous software applications implementing these ser-
vices. Fig. 1 shows a layered architecture appropriate for this model, with the
HCWF at the top, and the Services Layer immediately below.2

Focusing on the two top layers, there is a separation of concerns between the
top layer which focuses on handling a health care case, and the Services Layer
which is concerned with the implementation of the workflow as an orchestration
of services. The HCWF requires mapping each activity to a composite services
orchestration, defining the flow of control between them, and composing them
into the workflow and executing it. Naturally, the orchestration must support
all standard workflow patterns to provide workflow design capability, correctness
and flexibility.

However, the activities of the HCWF are of a different nature and have dif-
ferent characteristics to the ones mapped in the Services Layer. This distinction
is crucially important when discussing task characteristics, because although the
definitions in Section 4—such as critical and forcible—apply to both layers, the
relevant meanings between the two layers is very different.

1 The literature uses both tasks and activities to indicate each discrete step in a
workflow. We use both indistinctly.

2 Consideration of the other layers is outside the scope of this paper.

15th Argentine Symposium on Software Engineering, ASSE 2014

43 JAIIO - ASSE 2014 - ISSN: 1850-2792 - Página 107



4

So far, health workflows don’t seem too different to standard business work-
flows. However, in distributed workflows there are many points that require
special attention, and those relating to the medical domain even further care:

1. At the time of workflow execution starting, some specifics for a given task or
service might not be present or known. For instance, the workflow definition
may not know the specific laboratory that will conduct the analysis. Hence,
the orchestration should support the late binding of tasks to services. This
is in contrast to typical business processes such as manufacturing processes
where the workflow specification is complete prior to workflow invocation.

2. Health care workflows are often very long and complex, so the orchestration
should support nested sub-workflows, and check points to be able to roll-
forward or roll-back to that point and then resume the workflow accordingly.

3. In addition to the flow of control, critical activities—the failure of which will
abort the workflow—and activities that need to be undone in the event of
failure take extra importance, especially at the Services Layer. These failures
can be very severe in a medical context when compared to the failure of a
standard e-commerce or manufacturing process.

4. The top HCWF layer is very likely to be standard—e.g. imposed by exter-
nal bodies—regardless of the underlying services architecture, whereas the
implementation is fully dependent on this architecture.

5. Compensation of activities, very common in business workflows, is much
less common in health workflows (i.e. workflows accompanied by real ac-
tions [5]). Again, note that this is only true for the Health Care layer, not
for the Services layer where compensation may be a common occurrence.
HCWF activity compensation differs, since in most cases, medical actions
cannot be undone.

6. In addition, HCWF adherence to all the ACID properties is not appropriate:
– Each HCWF instance is initialised and associated to a patient, so the

underlying systems maintain instance data separately and there is no
opportunity for one process to read another processes’ ‘dirty’ data.

– Similarly, at the top layer each instance executes in isolation from others.
The isolation at the lower layers should be guaranteed by the underlying
services architecture implementation.

– Consistency is maintained if the HCWF commits successfully, or else
aborts gracefully by cancelling the effects of tasks executed up to the
point of the abort.

3 Related Work

The implementation of transactional behaviour in databases has been thoroughly
explored [6]. Over the last 20 years transactional behaviour has been success-

15th Argentine Symposium on Software Engineering, ASSE 2014

43 JAIIO - ASSE 2014 - ISSN: 1850-2792 - Página 108



5

fully extended to the field of distributed computing and information systems
[16]. Although significant research has been conducted in the area of health care
workflows (see for example Browne [4] and Mans [14]), such work does not cover
aspects of transactional behaviour.

In the business arena, transactional workflows were originally discussed by
Sheth and Rusinkiewicz [18]. Liu et al. [12] present a TWF (Transactional Work-
flow) model to link transaction support in traditional workflows with the rich
business process constructs. The authors argue that the ACID properties are un-
suitable for long-lived heterogeneous distributed workflow processes. Thus, they
relax the strict ACID properties by defining a set of task properties: Critical,
Compensatable, Forcible, and Undo-Not-Required. These properties allow
workflow designers to relax the strict transactional behaviour whilst still pro-
viding a certain level of transaction support.

In addition to these properties, the authors propose a set of complex task
composition patterns: Alternative, Contingency, Conditional, and Iterative

and also include the ability for nested transactional workflows (Hierarchical
Workflows). These patterns act as control flow constructs and coordination con-
straints. Each of the patterns, including the top level workflow is represented as
a finite state machine. The finite state machine of each task is combined into an
overall transactional workflow and forms the execution model. The authors are
then able to define a set of mappings between the state machines for each task
and the ‘visible state’ of the overall TWF. They also present a TWF scheduling
and execution architecture to determine the workflows correctness and ability to
reach an acceptable termination state.

Alonso et al. [1] compare and contrast the advanced transactional models
with the needs of business processes and workflow management systems, and
present a focused analysis of two transactional models [7, 5] that can be imple-
mented to support transactional workflows.

Garcia-Molina and Salem [7] propose the concept of Sagas, long-lived trans-
actions that are composed of individual sub-transactions that each perform in-
dependent items of work and can be interleaved with other transactions. In
addition to the primary flow sub-transactions, each sub-transaction has an asso-
ciated compensation sub-transaction. In the normal case, each sub-transaction
can commit once executed, preventing database locking for long periods. Assum-
ing all transactions are able to commit the saga has committed successfully. In
the event that a sub-traction fails, the saga must be aborted, and the compensa-
tion sub-transactions for all executed primary flow transactions are executed in
reverse order, undoing the sagas effects. In this way, a saga provides long-lived
atomicity without long-lived database locking.

Elmagarmid et al. [5] propose an advanced transaction model to support
the execution of global long-lived transactions in a multi-database system (a
collection of distributed, heterogeneous, independent database systems). The
model takes a multi-directional approach. First it uses the fact that there can

15th Argentine Symposium on Software Engineering, ASSE 2014

43 JAIIO - ASSE 2014 - ISSN: 1850-2792 - Página 109



6

be multiple databases that can execute a sub-transaction. Second, the authors
take advantage of the fact that some sub-transactions can be semantically “un-
done”, which allows these sub-transactions to be committed early, before the
non-compensable transactions. Associating compensable sub-transactions was
proposed by Gray et al. [9], and is used in the saga model in [7]. However,
the authors expand on this by mixing compensatable sub-transactions with
non-compensatable sub-transactions to help reduce the isolation granularity of
the global transaction. Thirdly, the authors’ approach makes use of temporal
scheduling.

Li et al. [11, 10] propose a calculus based formalism for composing long-lived
transactions. The authors’ language, called t-calculus, uses algebraic semantics
to define long running transactions that support weak atomicity by activating
compensation flows in the event of activity failures.

In Bhiri et al. [2], the authors propose an approach for composing Transac-
tional Composite (Web) Services (TCS). First, composite service designers select
the required component services that will form the TCS, and arrange the flow
between these component services using workflow patterns (see [19] for example
patterns). Then, designers associate transactional dependencies between com-
ponent services to form the transactional flow. Next, designers define a set of
Acceptable Termination States for the component services, which in turn defines
the TCS’ failure atomicity. The approach then involves using a set of transac-
tional validity rules to compute a set of transactional properties for the com-
posite services, which can then be verified to ensure the TCS is transactionally
consistent.

The patterns suggested in Bhiri et al. [3] combine workflow patterns together
with transactional dependencies to form transactional patterns that can be con-
nected together, suggesting an approach for reliable web service composition.
This work provides two approaches to compose TCS’s and ensure transactional
consistency: The first approach is to compose a TCS by connecting the required
transactional patterns together and assigning the desired transactional depen-
dencies. Their matching algorithm is then able to match the patterns and trans-
actional dependencies with suitable web-services that have the required transac-
tional properties; The authors second approach is to connect the required trans-
actional patterns together with the desired web-services, and then the authors
algorithm will use the potential web-service transactional properties to infer and
assign required transactional dependencies. However, their discussion does not
include the application of transactional reliability to complex workflow patterns
like multi-choice, multi-merge, synchronising merge, and arbitrary cycles.

In refining workflow models to support long-lived transactions these works
demonstrate that there have been significant efforts to provide finer activity
semantics, including characterising activities and their impact on the successful
completion of a workflow. They either address a particular aspect of long-lived

15th Argentine Symposium on Software Engineering, ASSE 2014

43 JAIIO - ASSE 2014 - ISSN: 1850-2792 - Página 110



7

transactions, propose an execution model, present an approach for transactional
web-service composition but do not consider some characteristics of transactional
workflows or are relevant health care workflow research. However, in this work
we investigate the rules necessary for transactional workflow composition, whilst
considering the semantics of the target domain—health care in this work—and
the relevant transactional characteristics discussed in some research works above.

4 Long-Lived Healthcare Transactions

Before discussing the proposed long-lived transaction integrity rules, we first
briefly discuss some of the semantics and dependency rules proposed in existing
literature, that we make use of in our proposed rules.

In Liu et al. [12], the authors proposed several task properties that char-
acterise the tasks semantics. These are: Forcible, Critical, Compensatable
and Undo-not-required. Forcible is defined as a task guaranteeing to eventu-
ally succeed. A critical task is one that must have committed successfully if the
transactional workflow commits, whereas non-critical tasks may have aborted.
A compensatable task is one that can be undone in the event the workflow is
aborted. Finally an undo-not-required task does not need to be reversed if the
task commits but the transaction is aborted, (see [12] for further details).

In addition to the above semantics, the authors also combine two task de-
pendencies identified in Bhiri et al. [3]. These are the Activation dependency,
which is the activation of task T2 after task T1 has been executed, and the
Alternative dependency, which refers to a contingency task that is activated
should the primary task fail, (see [3] for further details).

4.1 Transactional Integrity Rules for HCWF Composition and
Orchestration

In this section we introduce our proposed transactional integrity rules, that en-
sure a workflow maintains the ability to either commit successfully or satisfacto-
rily abort if required. For each of the common workflow patterns defined in van
Der Aalst et al. [19]: sequence, parallel split, exclusive choice, simple
merge, multi-choice, synchronising merge, and arbitrary cycles, we de-
fine the rules and constraints needed to ensure correct transactional behaviour.
The patterns discussed are numbered to coincide with those used in [19]. For
each of the patterns, we provide a brief description of the patterns behaviour
and direct the reader to [19] for further details.

In the following discussion, tasks may be designated as Dependent or Inde-
pendent. Dependent tasks are those that have a dependency attached. We say
that task T1 is a source if it has attached another task T2. Task T2 is then
called the contingency task. Independent tasks are those without a dependency
attached.

15th Argentine Symposium on Software Engineering, ASSE 2014

43 JAIIO - ASSE 2014 - ISSN: 1850-2792 - Página 111



8

Transactional Workflow Commit Protocol

Once the workflow designer has composed the transactional workflow (TWF)
using the rules discussed in the patterns below, the design has to be validated
for any violations of the following guidelines. If there is a violation then the
workflow needs to be altered.

1. A TWF can commit if all critical tasks in the workflow have committed.
2. A TWF can abort if all the undo-required tasks are compensated.
3. A TWF cannot abort if a critical non-compensatable task has been executed.
4. A TWF if all the undo-required tasks are compensatable.
5. A TWF is said to be forcible if all the critical tasks in the workflow are

forcible. A forcible workflow is always said to commit.

Pattern 1 (Sequence)

Description: Two activities A and B are in sequence if the completion of ac-
tivity A enables activity B for execution.

Transaction Rules/Constraints:

1. A set of critical tasks can be executed sequentially without being compen-
satable if all those tasks are forcible.

2. A set of critical and non-critical tasks can be executed sequentially if all
critical tasks are forcible.

3. A set of critical tasks can be executed sequentially without any forcibility
constraints if all those tasks are compensatable and none of the tasks is a
source of an alternative dependency to a critical, non-compensatable task.

4. For a set of critical compensatable tasks with one or more tasks being
the source of alternative dependency to a critical non-compensatable task,
then let task T1 be the first critical compensatable task having an non-
compensatable task as the contingency option in the sequential pattern:
(a) All independent critical tasks following task T1 are forcible.
(b) For each dependent task following task T1, the contingent task of the

alternative dependency is forcible.

5. A set of critical tasks and non-critical tasks can be executed sequentially
without any forcibility constraints if the set of critical tasks are compensat-
able.

6. If there is a critical non-compensatable task in the workflow, then the work-
flow is transactionally consistent if all subsequent critical tasks following the
critical non-compensatable task are forcible.

15th Argentine Symposium on Software Engineering, ASSE 2014

43 JAIIO - ASSE 2014 - ISSN: 1850-2792 - Página 112



9

7. In a workflow or sub-workflow, a critical non-compensatable task T2 can be
executed after a critical non-compensatable task T1, if:
(a) T2 is an independent critical non-compensatable task, then T2 has to

be forcible.
(b) T2 has an alternative dependency to a task T3, then T3 has to be

forcible.
(c) All subsequent critical tasks in the current sub-workflow and the follow-

ing sub-workflows are forcible.

Pattern 2 (Parallel Split / Concurrency)

Description: A split from a single execution path into multiple concurrently
executing paths.

Transaction Rules/Constraints:

1. A set of critical compensatable tasks can be executed concurrently if non
of the tasks in the set is a source of alternative dependency to a critical
non-compensatable task.

2. A set of critical compensatable tasks with at least one task in the set being
the source of an alternative dependency to a critical non-compensatable task,
can be executed concurrently if:
(a) All the critical compensatable tasks which are not a source of alternative

dependency are forcible.
(b) In the case of more than one contingent non-compensatable task in the

workflow, then all the contingent non-compensatable tasks are forcible.

3. A set of tasks that are not a source of alternative dependency can be executed
concurrently if:
(a) All the critical non-compensatable tasks are forcible, and
(b) All the subsequent critical tasks in the workflow are forcible.

4. A set of critical non-compensatable tasks with at least one task in the set
being the source of alternative dependency to a critical non-compensatable
task, can be executed concurrently if:
(a) All the concurrently executing critical non-compensatable tasks which

are not a source of alternative dependency are forcible.
(b) All the critical tasks which are the contingent tasks of the alternative

dependency are forcible.
(c) All the subsequent critical tasks in the workflow are forcible.

5. A set of critical compensatable tasks can be executed concurrently with a
set of critical non-compensatable tasks if:
(a) All the critical compensatable tasks that are not a source of alternative

dependency are forcible.

15th Argentine Symposium on Software Engineering, ASSE 2014

43 JAIIO - ASSE 2014 - ISSN: 1850-2792 - Página 113



10

(b) All the critical non-compensatable tasks that are not a source of alter-
native dependency are forcible.

(c) For every task in the set that is the source of an alternative dependency,
the contingent task of the alternative dependency is forcible.

(d) All the subsequent critical tasks in the workflow are forcible.

6. A set of critical non-compensatable tasks can be executed concurrently
with the set of non-critical compensatable tasks and/or non-critical non-
compensatable tasks only if:
(a) All the concurrently executing critical non-compensatable tasks which

are not a source of alternative dependency are forcible.
(b) For every task in the set which is the source of an alternative dependency,

the critical contingent task of the alternative dependency is forcible.
(c) All the subsequent critical tasks in the workflow are forcible.

As the failure of the non critical tasks does not require the workflow to
abort, they need not be forcible.

7. A set of critical tasks and non-critical tasks can be executed concurrently
without any forcibility constraints if all the critical tasks executing concur-
rently are compensatable. If there exists at-least one critical task that is a
source of an alternative dependency to a critical non-compensatable task
then rule 2 shall be satisfied.

Pattern 4 (Exclusive choice)

Description: A point in the execution path where a decision is made to select
one of many alternative execution paths.

Transaction Rules/Constraints:

1. A set of independent compensatable tasks can be used in the exclusive choice
pattern of the workflow without any forcibility constraint imposed.

2. A set of compensatable tasks with one or more tasks being the source of
alternative dependency to a critical non compensatable task, can be used
in the exclusive choice pattern of the workflow if all the subsequent critical
tasks in the workflow are forcible.

3. A set of compensatable and non compensatable tasks can be used in the
exclusive choice pattern of a workflow if all the subsequent critical tasks in
the workflow are forcible.

4. A set of critical non-compensatable tasks with one or more tasks being the
source of alternative dependency to a critical non-compensatable task, can
be used in the exclusive choice pattern of the workflow if the contingency
task and all the subsequent critical tasks in the transaction are forcible.

15th Argentine Symposium on Software Engineering, ASSE 2014

43 JAIIO - ASSE 2014 - ISSN: 1850-2792 - Página 114



11

Pattern 5 (Simple merge)

Description: A point that takes many execution paths, where only one path
is active and merges them back into a single execution path.

Transaction Rules/Constraints:

1. If one of the incoming branches of the simple merge has a non-compensatable
task associated with it, then:
(a) All the tasks in every incoming branch that is being merged shall be

made forcible.
(b) All subsequent critical tasks following the merge point shall be made

forcible.

Pattern 6 (Multi-choice)

Description: A point where a single execution path is split into many paths
where any number of paths may be concurrently executed.

Transaction Rules/Constraints:

1. If an OR-split or selection pattern of a workflow has a set of compensatable
tasks with one or more tasks being the source of alternative dependency to
a critical non-compensatable task then:
(a) All the independent tasks specified in the OR-split pattern shall be

forcible.
(b) All the contingent tasks specified in the OR-split shall be forcible.
(c) All the subsequent critical tasks in the workflow following the OR-split

shall be forcible.

2. If an OR-split or selection pattern of a workflow has more than one non
compensatable task, then:
(a) All the independent tasks specified in the OR-split pattern shall be

forcible.
(b) All the contingent tasks specified in the OR-split pattern shall be forcible.
(c) All the subsequent critical tasks in the workflow following the OR-split

shall be forcible.

Pattern 7 (Synchronising merge)

Description: A point that merges multiple execution paths where only some
may be concurrent executing into a single execution path, waiting for all active
incoming act branches before continuing execution.

Transaction Rules/Constraints:

1. If one of the incoming branches of the synchronising merge has a non-
compensatable task associated with it, then:
(a) All the tasks in every incoming branch that is being merged shall be

forcible.
(b) All subsequent critical tasks following the merge point shall be forcible.

15th Argentine Symposium on Software Engineering, ASSE 2014

43 JAIIO - ASSE 2014 - ISSN: 1850-2792 - Página 115



12

Pattern 10 (Arbitrary cycles)

Description: A set of activities that form a loop and are executed repeatedly.

Transaction Rules/Constraints:

1. A set of independent compensatable and non-compensatable tasks can be
used in the cycle of a workflow if:
(a) All the tasks involved in the cycle are forcible irrespective of compensa-

tability.
(b) All the subsequent critical tasks in the current sub-workflow and follow-

ing sub-workflows are forcible.

2. A set of dependent compensatable and non-compensatable tasks can be used
in the cycle of a workflow if:
(a) All the independent tasks involved in the cycle are forcible irrespective

of compensatability.
(b) All the contingent tasks involved in the cycle are forcible.
(c) All the subsequent critical tasks in the current sub-workflow and follow-

ing sub-workflows are forcible.

4.2 Discussion and Motivating Example

We now consider a sub-set of a long-lived stroke management health care work-
flow that has been translated3 from the recommendations provided in the Clin-
ical Guidelines for Stroke Management 2010 (see NSF [15]), and have adapted
into a HCWF process, see Fig. 2.

For each of the tasks in Fig. 2, Table. 1 defines the associated semantics for
each task. For reasons of page count limitations, the authors select a few of the
most common transactional integrity rules and discuss there use in the motivat-
ing example shown in Fig. 2.

We can see from the first three tasks (Detailed History), (Clinical Exami-
nation) and (ABCD2 Score), that they are connected sequentially [Pattern 1]
and therefore each have an activation dependency with the prior task. In Ta-
ble. 1, the (Detailed History) task is has no semantics associated with it. In
some cases, a patient may have no existing history (first emergency visit) and
may not physically be capable of providing existing history. Thus, the task can-
not be forcible. Given that the patients history may have the least impact in this
treatment process, we can say the task is non-critical. The two tasks (Clinical
Examination) and (ABCD2 Score) on the other hand are designated forcible and
critical. For the (Clinical Examination), a doctor can always perform a patients
examination, making it forcible, and without the task completing successfully,

3 Translation required subjective interpretation of the relevant guideline recommen-
dations.

15th Argentine Symposium on Software Engineering, ASSE 2014

43 JAIIO - ASSE 2014 - ISSN: 1850-2792 - Página 116



13

BI

Detailed
History

Clinical
Examination

ABCD2

Score

Check Heart
Rate

Alternate Dependency

CRT CRT

CRT

F

ECG

CRT

MRI

CRT

CT

Alternate Dependency

CRT

E
C

BI
Immediately

BI
Urgent <24h

BI
<48h

A
N
D

S
M

CI

Carotid
Imaging

CRT

Referral

Alternate Dependency

CRT

E
C

S
M

CI
<24h

F

F

F

F

Blood
Test

S
Y
N

Imaging
<24h

CRT F

F

Fig. 2. Health Care Workflow for stroke management assessment phase

Table 1. Health Care Workflow transactional characteristics

Forcible Critical Compensatable Alternative Dependency

Detailed History

Clinical Examination X X
ABCD2 Score X X
MRI X CT

CT X X
ECG X Heart Rate

Heart Rate X X
Carotid Imaging X Referral

Referral X X
Blood Test X

the process cannot proceed and commit, making it critical. Similarly for task
(ABCD2 Score), the ABCD2 Score can always be calculated and the result
is required upstream so it too is forcible and critical. According to sequential
rule two, all three tasks can form a transaction and be executed successfully
as we are combining a non-critical non-forcible task (Detailed History) with two
critical tasks (Clinical Examination) and (ABCD2 Score) that are both forcible.

Next we look at the exclusive choice and simple merge patterns. Towards the
top centre we have an exclusive choice leading into three instances of the brain
imaging (BI) task that are merged back together using a simple merge. The three
instances are used to separate the different timing constraint choices available
for the Brain Imaging activity. The activity itself is a compound activity identi-
fied by the thicker boarder. On the right, we can see the BI activity is composed
of two tasks, an (MRI) scan that is critical and an alternative of a (CT) scan
that is also critical as well as forcible. Having a critical non-compensatable task

15th Argentine Symposium on Software Engineering, ASSE 2014

43 JAIIO - ASSE 2014 - ISSN: 1850-2792 - Página 117



14

as a source of an alternative dependency fits into rule 4 of the exclusive choice
pattern above. The (CT) scan task is required to be forcible in the event the
(MRI) task cannot be successfully completed. The exclusive choice pattern is
again used in the centre for the carotid imaging (Imaging) and (CI) activity.

The two exclusive choice patterns can both be considered activities within
the concurrency pattern (AND split and Synchronising join). Following on from
the (ABCD2 Score) task, the single execution path splits into three concurrently
executing paths. In the first path a critical non-compensatable (ECG) task is
followed by the brain imaging exclusive choices pattern. In the second path is the
carotid imaging exclusive choice pattern. In the third path we have the (Blood
Test) task. Since each of the exclusive choice transactions will eventually com-
mit, and given (ECG) is critical and a source dependency to (Check Heart Rate),
and task (Blood Test) is forcible, concurrency rule 4 is satisfied.

Thus in this way, transactionally correct workflows may be composed and
executed. It should also be mentioned that each transaction can act as a check-
point, such that a transaction abortion does not require the whole workflow to
be rolled-back, the patient can continue from their last checkpoint.

5 Conclusion

In this work, we introduced long-lived health care workflows and presented an ap-
plicable multi-layered architecture that encompasses both health care workflow
and distributed services aspects. In doing so, we also outlined the differentiating
factors of normal business processes and health care workflows.

Following on we present the core of this work, our rules-based approach to
modelling long-lived HCWF transactions. The approach ensures HCWF trans-
actions are transactionally correct and will either commit successfully or abort
gracefully. Further research in this area will focus on a deriving further rules, a
BPEL engine implementation and a mathematical formalisation.

References

[1] Gustavo Alonso, Divyakant Agrawal, Amr El Abbadi, Mohan Kamath,
Roger Gunthor, and C Mohan. Advanced transaction models in work-
flow contexts. In Data Engineering, 1996. Proceedings of the Twelfth
International Conference on, pages 574–581. IEEE, 1996.

[2] Sami Bhiri, Olivier Perrin, and Claude Godart. Ensuring required fail-
ure atomicity of composite web services. In Proceedings of the 14th
international conference on World Wide Web, pages 138–147. ACM, 2005.

[3] Sami Bhiri, Olivier Perrin, Claude Godart, et al. Extending workflow pat-
terns with transactional dependencies to define reliable composite web ser-
vices. In Advanced International Conference on Telecommunications and

15th Argentine Symposium on Software Engineering, ASSE 2014

43 JAIIO - ASSE 2014 - ISSN: 1850-2792 - Página 118



15

International Conference on Internet and Web Applications and Services
(AICT/ICIW 2006), pages 145–150, 2006.

[4] Eric Donald Browne. Workflow modelling of coordinated
inter-health-provider care plans. PhD thesis, University of South
Australia, 2005.

[5] Ahmed Elmagarmid, Yungho Leu, Witold Litwin, and Marek Rusinkiewicz.
A multidatabase transaction model for interbase. Technical report, Purdue
University, 1990.

[6] Ahmed K Elmagarmid. Database transaction models for advanced
applications. Morgan Kaufmann Publishers Inc., 1992.

[7] Hector Garcia-Molina and Kenneth Salem. Sagas. In Proceedings of the
1987 ACM SIGMOD International Conference on Management of Data,
SIGMOD ’87, pages 249–259. ACM, 1987.

[8] Diimitrios Georgakopoulos, Mark Hornick, and Amit Sheth. An overview
of workflow management: From process modeling to workflow automation
infrastructure. Distributed and Parallel Databases, 3(2):119–153, 1995.

[9] Jim Gray et al. The transaction concept: Virtues and limitations. In VLDB,
volume 81, pages 144–154, 1981.

[10] Jing Li, Huibiao Zhu, and Jifeng He. Algebraic semantics for compensable
transactions. In Theoretical Aspects of Computing–ICTAC 2007, pages
306–321. Springer, 2007.

[11] Jing Li, Huibiao Zhu, Geguang Pu, and Jifeng He. Looking into compens-
able transactions. In Software Engineering Workshop, 2007. SEW 2007.
31st IEEE, pages 154–166. IEEE, 2007.

[12] Chengfei Liu, Dean Kuo, Michael Lawley, and Maria E Orlowska. Modeling
and Scheduling of Transactional Workflows. pages 1–13, 1996.

[13] Madasamy Madasamy and George Fernandez. Transactional Enterprise
Workow Patterns [A Rule-Based Approach]. Personal Communication,
March 2014.

[14] R Mans. Workflow support for the healthcare domain. PhD thesis, Eind-
hoven University of Technology, 2011.

[15] National Stroke Foundation (NSF). Clinical guidelines for stroke manage-
ment 2010, 2010. URL http://strokefoundation.com.au/site/media/

clinical_guidelines_stroke_managment_2010_interactive.pdf.
[16] M Tamer Özsu and Patrick Valduriez. Principles of distributed database

systems. Springer, 2011.
[17] Stephen Ross-Talbot. Orchestration and choreography: Standards,

tools and technologies for distributed workflows. In NETTAB
Workshop-Workflows management: new abilities for the biological
information overflow, Naples, Italy, 2005.

[18] Amit Sheth and Marek Rusinkiewicz. On transactional workflows. Data
Engineering Bulletin, 16(2):20, 1993.

[19] Wil MP van Der Aalst, Arthur HM Ter Hofstede, Bartek Kiepuszewski, and
Alistair P Barros. Workflow patterns. Distributed and parallel databases,
14(1):5–51, 2003.

15th Argentine Symposium on Software Engineering, ASSE 2014

43 JAIIO - ASSE 2014 - ISSN: 1850-2792 - Página 119

http://strokefoundation.com.au/site/media/clinical_guidelines_stroke_managment_2010_interactive.pdf
http://strokefoundation.com.au/site/media/clinical_guidelines_stroke_managment_2010_interactive.pdf

	Modelling Long-Lived Health Care Workflow Transactions



