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Abstract. A new architecture for maximum likelihood sequence detec-
tion (MLSD) in nonlinear dispersive channels (NLCs) is presented, and
its robustness to inaccurate channel knowledge is analyzed. This archi-
tecture is developed by considering a novel orthogonal representation of
the NLC, which is exploited to develop a front-end capable of obtain-
ing uncorrelated symbol rate samples, representing a sufficient statistic
for information decoding. This front-end is a special form of space-time
whitened matched filter (ST-WMF), and the MLSD obtained by using
this front-end (ST-WMF-MLSD) requires simple branch metrics due to
the signal whitening. The ST-WMF also allows for space-time compres-
sion of the equivalent channel, which is exploited for further complex-
ity reduction of the ST-WMF-MLSD. Simulation results show the good
trade-off in performance and complexity obtained with the ST-WMF-
MLSD, even in the presence of inaccurate channel knowledge.

Keywords: MLSD, nonlinear channel, non-Gaussian noise, optical-fiber
communications, whitened matched filter, dimensionality reduction

1 Introduction

Maximum likelihood sequence detection (MLSD) reaches the optimum perfor-
mance for sequence estimation in communication systems [1]. For linear chan-
nels we could highlight Forney’s [2] and Ungerboeck’s [3] architectures. Forney’s
receiver consists of a symbol rate sampled whitened matched filter (WMF), fol-
lowed by a Viterbi detector (VD) with simple euclidean branch metrics. On the
other hand, Ungerboeck’s receiver consists of a symbol rate sampled matched
filter (MF), followed by a VD with suitable branch metrics which take into ac-
count the correlation between received samples. Forney’s architecture optimally
compresses the equivalent dispersive channel energy, which has been exploited
in many reduced state schemes (see [4] and references there in). For nonlinear
channels (NLCs) the optimal MLSD solution is also known, and many struc-
tures have been proposed [5–10]. Most of these schemes consist of a matched
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filter bank (MFB) sampled at the symbol rate, and followed by a VD with suit-
able branch metrics to take into account the nonlinear intersymbol interference
(ISI) and noise correlation. The receiver in [9] consists of a wide-band filter with
oversampling to obtain uncorrelated samples representing a sufficient statistic.
The structures in [7, 10] use special front-ends to obtain uncorrelated symbol
rate samples.

Despite their optimum performance, MLSD receivers may have a prohibitive
complexity in highly dispersive NLCs, and suboptimum equalizers may be pre-
ferred in many practical applications. Long haul optical intensity modulated
(IM) transmissions with direct detection (DD) are extremely low cost communi-
cation systems, that have the drawback of being one of the scenarios where the
strong nonlinear ISI imposes the use of MLSD receivers to make communication
possible. While suboptimum equalizers fail to compensate the nonlinear distor-
tion in channels with a few tens of kilometers, it was observed that the IM/DD
link can be compensated with a ∼ 3dB loss respect to back-to-back in links up to
1000km [11]. However, the complexity required by known MLSD receivers limits
the practical transmission distance to just a few hundreds of kilometers. Thus,
reduced complexity MLSD receivers are required in practical applications such
as IM/DD optical links, even with actual integration capabilities.

Oversampled MLSD (OS-MLSD) receivers, developed upon the philosophy
in [9], are widely used for theoretical and experimental investigations in IM/DD
fiber optic transmissions [11, 12]. In this article we present further results ob-
tained with the novel ST-WMF-MLSD receiver presented in [10]. In [10] it is
shown how the ST-WMF-MLSD structure presents a smooth degradation of
performance when complexity is reduced. The results presented in this article
extend those in [10], showing that the ST-WMF-MLSD achieves a good perfor-
mance even in the presence of imperfect channel knowledge.

This article is structured as follows. Section 2 describes the NLC model,
and Section 3 describes the ST-WMF-MLSD architecture. Numerical results are
presented in Section 4, while final conclusions are drawn in Section 5.

2 Nonlinear Channel Model

The noisy received signal is given by

r(t) =s(t) + z(t), (1)

where s(t) is the noise-free signal and z(t) is the noise component, which is
assumed to be a white Gaussian process with power spectral density N0. Com-
ponent s(t) can be expressed by using its Volterra-series expansion. For example,
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in optical IM/DD systems we get12

s(t) =
∑

k

akf0(t− kT ) +

N−1
∑

m=1

∑

k

akak−mfm(t− kT ), (2)

where f0(t) is the linear kernel, fm(t), with m > 0, is the m-th second-order
kernel [13], ak is the k-th symbol at the input of the nonlinear channel, 1/T is
the symbol rate, and N is the total number of kernels.

2.1 Channel Model Orthogonalization

Next we present an alternative representation of the nonlinear signal s(t) [10].
Without loss of generality, we consider here the Volterra-series with a dominant
linear kernel f0(t), and we select the first pivoting response as h0(t) = f0(t). Let
H0 be the signal space spanned by the set {h0(t − kT )} [1]. We assume that
signal spaces are Hilbert spaces with inner product defined as

∫

∞

−∞
x(t)y∗(t)dt,

where superscript ∗ denotes complex conjugate. From the projection theorem,
the nonlinear kernels fm(t) can be uniquely expressed as

fm(t) =
∑

n

λ(0,m)
n h0(t− nT ) + g(0)m (t), (3)

where g
(0)
m (t) is orthogonal to the signal space H0, i.e.,

∫

∞

−∞

g(0)m (t)h∗

0(t− jT )dt = 0, m = 1, ..., N − 1, ∀j ∈ Z, (4)

while
∫

∞

−∞
|g

(0)
m (t)|2dt is minimum [1], and Z denotes the set of all integers. We

highlight that the first summation in eq. (3) is the projection of fm(t) onto H0.

Define G0
m as the signal space spanned by {g

(0)
m (t − kT )}. For x(t) ∈ H0 and

y(t) ∈ G0
m, from (4) note that

∫

∞

−∞
x(t)y∗(t)dt = 0, therefore x(t) and y(t) are

orthogonal signals [1]. Replacing (3) in (2) and operating, we can obtain

s(t) = s0(t) + s0(t), (5)

where

s0(t) =
∑

k

[

ak +

N−1
∑

m=1

akak−m ⊗ λ
(0,m)
k

]

h0(t− kT ), (6a)

s0(t) =
∑

k

N−1
∑

m=1

akak−mg(0)m (t− kT ), (6b)

1 The DC term of the series expansion is omitted.
2 Note that (2) only considers kernels up to second-order. This is just to keep the
notation as simple as possible, however the ST-WMF-MLSD is not limited in the
order of nonlinearity it can handle.
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with operator ⊗ denoting convolution. Notice that s0(t) ∈ H0 and s0(t) ∈
∪N−1
m=1G

0
m, therefore signals s0(t) and s0(t) are orthogonal (see (4) and associated

discussion). Without loss of generality, we select the second pivoting response as

h1(t) = g
(0)
1 (t), then eq. (6b) can be rewritten as

s0(t) =
∑

k

ak

[

ak−1h1(t− kT ) +
N−1
∑

m=2

ak−mg(0)m (t− kT )

]

. (7)

Similarly to (5)-(6), s0(t) can be expressed as s0(t) = s1(t) + s1(t), where

s1(t) =
∑

k

[

akak−1 +

N−1
∑

m=2

akak−m ⊗ λ
(1,m)
k

]

h1(t− kT ), (8a)

s1(t) =
∑

k

N−1
∑

m=2

akak−mg(1)m (t− kT ), (8b)

with λ
(1,m)
n chosen to satisfy

∫

∞

−∞

g(1)m (t)h∗

1(t− jT )dt = 0, for m = 2, ..., N − 1, ∀j ∈ Z. (9)

Thus, note that s1(t) is orthogonal to the signal spaces H0 and H1, spanned by
{h0(t − kT )} and {h1(t − kT )}, respectively. Repeating the processing on eqs.
(4)-(6) and (7)-(9), and generalizing, we can get

s(t) =
N−1
∑

n=0

sn(t) =
N−1
∑

n=0

∑

k

b
(n)
k hn(t− kT ), (10)

where hn(t) is the response of the n-th channel path, and b
(n)
k is given by

b
(n)
k =











ak +
∑N−1

m=1 akak−m ⊗ λ
(0,m)
k if n = 0

akak−n +
∑N−1

m=n+1 akak−m ⊗ λ
(n,m)
k if 0 < n < N − 1

akak−N+1 if n = N − 1,

(11)

with
∫

∞

−∞

hm(t)h∗

n(t− jT )dt = 0 m 6= n, ∀j ∈ Z. (12)

From (10) and (12) note that
∫

∞

−∞

sm(t)s∗n(t− jT )dt = 0, ∀ j ∈ Z with m 6= n. (13)

Equation (13) is a sort of extended orthogonality condition3, that will be an
important property for the development of the ST-WMF-MLSD in Section 3.

3 The classical orthogonality condition corresponds to the particular case of (13) with
j = 0.
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Note that at the i-th orthogonalization step, the energy of the signal com-
ponent orthogonal to the subspace ∪i−1

l=0Hl is minimized (see (3)-(4)). Then, a
proper selection of the pivoting response at each step will maximize the signal
energy in the first paths.

3 ST-WMF-MLSD for Nonlinear Channels

The MLSD receiver chooses the sequence {ak} that minimizes the metric

J =

∫

∞

−∞

|r(t) − s(t)|2 dt. (14)

Using (9) and (10) in (14), it can be shown that all the information in the received
signal r(t), needed to estimate the information sequence {ak}, is contained in

the sequence vector r̄k = [r̄
(0)
k , r̄

(1)
k , . . . , r̄

(N−1)
k ]T , where

r̄
(n)
k = r(t) ⊗ h∗

n(−t)|t=kT , n = 0, 1, . . . , N − 1 (15)

are the symbol rate sampled outputs of a bank of filters matched to the path
responses {hn(t)}

N−1
n=0 , as shown in Fig. 1 (see the first block denoted as S-WMF).

Let r̄
(n)
k = s̄

(n)
k + z̄

(n)
k be the decomposition of the n-th MF sampled output

into its signal and noise components. It follows from (13) that E[z̄
(n)
l z̄

(m)∗
l−k ] =

N0ρ
(n)
k δn−m, with ρ

(n)
k =

∫

∞

−∞
hn(t)h

∗

n(t−kT )dt, and δi denotes the Kronecker’s
delta. Then, the MFB in (15) produces a vector process r̄k with spatially uncor-
related components (independent because of the Gaussian assumption). We call
this filter bank and symbol rate sampler as the space-whitening MF (S-WMF),
as shown in the first block of Fig. 1. Note the S-WMF in Fig. 1 is implemented
with P filters instead of N . The parameter choice P < N can be used to reduce
complexity by spatial truncation, which introduces negligible degradation as dis-
cussed in Section 2.1, and we shall verify it in Section 4 by numerical simulations
in IM/DD optical transmissions.

Let Sn(z) = Mn(z)M
∗

n(1/z
∗) be the folded spectral factorization of Sn(z),

with Sn(z) and Mn(z) being the Z-transforms of the sequence ρ
(n)
k and the

minimum-phase response m
(n)
k , respectively (see eq. (5.80) in [1] for more de-

tails). Then, it is straightforward to show that by filtering r̄k with a bank of
scalar whitening filters (WF) {M−∗

n (1/z∗)}N−1
n=0 , results in the process

r̃k =
[

r̃
(0)
k r̃

(1)
k . . . r̃

(N−1)
k

]T

, (16)

that besides being spatially independent is also time independent. Let w be the
vector with the noise components of r̃k, then its power spectral density results
SW = N0I, where I is the identity matrix. Then, the MLSD results in the
minimization of the simple euclidean metric J = ‖r̃k − s̃k‖

2 , where s̃k is the
signal component of r̃k, and is given by

s̃k =
[

s̃
(0)
k s̃

(1)
k . . . s̃

(N−1)
k

]T

= Mk ⊗ bk, (17)
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Fig. 1. Block diagram of the P -dimensional ST-WMF-MLSD receiver.

while Mk represents the N ×N diagonal matrix

diag{Mk} =
[

m
(0)
k m

(1)
k . . .m

(N−1)
k

]

, (18)

and

{bk} =
[

b
(0)
k b

(1)
k . . . b

(N−1)
k

]T

. (19)

Figure 1 shows the implementation of the time-whitening filter (T-WF) Mk.
The concatenation of the S-WMF and the T-WF results in the ST-WMF, also
indicated in Fig 1. The MLSD based on the ST-WMF (ST-WMF-MLSD) then

minimizes J = ‖r̃k − s̃k‖
2
, with a traditional VD with simple P -dimensional

branch metrics. Note that P < N , as suggested in Fig. 1, can be used to reduce
complexity thanks to the energy compression obtained with the novel orthogonal
representation proposed in Section 2.1. As the scalar components of the response
Mk are minimum-phase, its energy is compressed in time [1]. These properties
can be exploited to reduce the number of states in the VD and the complexity
of the branch metrics.

4 ST-WMF-MLSD in IM/DD Optical Systems

Next we analyze the proposed ST-WMF-MLSD receiver in transmissions over
IM/DD fiber-optic systems with on-off keying (OOK) modulation. We focus on
two key aspects of ST-WMF-MLSD: its performance (in comparison with current
solutions based on OS-MLSD), and its ability to reduce complexity (e.g., number
of states of VD). Complexity reduction is possible owing to (i) the minimum-
phase property of the equivalent channel response provided by ST-WMF, and
(ii) the spatial compression property. The latter gives rise to reduction of the
ST-WMF dimension, P . This is achieved by using the most significant P paths
of the nonlinear channel in (10).

Figure 2 depicts the optical system under consideration. The transmitter
modulates the intensity of the transmitted signal using NRZ OOK modulation.
Data rate is 1/T = 10Gb/s, and the transmitted pulse has an unchirped Gaus-

sian envelope e−t2/2T 2

0 with T0 = 36ps. The standard single mode fiber (SMF)
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Fig. 2. IM/DD fiber-optic system with ST-WMF-MLSD receiver.

introduces CD (17 ps/(nm-km)), as well as attenuation. Optical amplifiers de-
ployed along the fiber introduce amplified spontaneous emission (ASE) noise
in the signal, which is modeled as AWGN in the optical domain. The received
optical signal is filtered by a Lorentzian optical filter (15GHz), and then con-
verted to a current with a PIN diode or avalanche photodetector. The resulting
photocurrent is filtered by a fourth-pole Butterworth electrical filter (10GHz).
The noise component after the electrical filtering is non-Gaussian and signal-
dependent [14]. Therefore, the electrical signal is first processed by a memory-
less nonlinear transformation. It has been found that after a square root trans-
formation, the noise can be assumed Gaussian and signal-independent [12, 15].
Furthermore, channel nonlinearities can also be reduced by using the square
root transformation [16], which also improves the space compression used to re-
duce the receiver dimension (i.e., most of the channel energy is concentrated on
the linear kernel). The split-step Fourier method is used to compute the prop-
agation of optical signals through the fiber. Oversampled linear and nonlinear
kernels are extracted from the electrical signal after the square root transfor-
mation. The oversampling factor is T/Ts = 16. Then, we compute hn(kTs) and

λ
(n,m)
k according to (6a) and (8a), and the symbol rate channel response ma-

trix Mk can be easily obtained from (18). Since the noise after the square root
transformation is approximately Gaussian and signal-independent [15], the the-
ory proposed in [17] is used to evaluate the bit error probability. All the kernels of
the nonlinear channel are used to compute the error probability, independently
of the receiver dimension, P .

4.1 Performance with Perfect Channel Knowledge

Figure 3-A shows the penalty of the optical signal-to-noise ratio (OSNR) at
BER= 10−3, as a function of the fiber length, L. We present results for two un-

constrained complexity receivers (i.e., without reduction of the number of states
of the VD): ST-WMF-MLSD with P = 2, and OS-MLSD with 2 samples/bit
(note that the branch metric dimensions of both VDs are the same). From Fig.
3-A we observe that both receivers have essentially the same performance, with
a negligible loss with ST-WMF-MLSD, caused by using P < N .

Figure 3-B depicts the OSNR penalty at BER= 10−3 versus the number of
states of the VD for L = 700 km. We also present results for ST-WMF-MLSD
with P = 1 (i.e., only one filter in the bank). For OS-MLSD with 2 samples/bit,
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Fig. 3. (A): OSNR penalty at BER = 10−3 versus fiber length with unconstrained
complexity receivers. (B): OSNR penalty at BER = 10−3 versus number of states of
the VD with L = 700 km.

where the reduction of states is achieved by truncation and optimization of the
sampling phase in order to minimize BER (8 uniformly distributed phases in the
interval T/2 were tested). From Fig. 3-B, we verify that the number of states of
the VD at a penalty of 4.6 dB can be reduced from 2048 to 256 with ST-WMF-
MLSD and P = 1. Notice that this performance is achieved by using a VD
with one sample per bit. Furthermore, we emphasize that these benefits widely
outperform the extra complexity required by the linear filter and the channel
estimator.

4.2 Performance with Imperfect Channel Knowledge

The performance evaluation of the proposed ST-WMF-MLSD architecture in
Fig. 3 has been achieved assuming a perfect knowledge of the channel ({fn(t)}

N−1
n=0 ).

Then we present a simple analysis about the impact of the channel estimation
inaccuracy on the performance of the ST-WMF-MLSD architecture in trans-
missions over IM/DD optical systems. This study shows that the performance
degradation in ST-WMF-MLSD receivers caused by an imperfect channel esti-
mation is low (∼ 0.2) dB, and similar to that achieved by oversampled OS-MLSD
receivers in the L = 700 km fiber link used in the example of Fig. 3-B.

The estimation of the oversampled linear and nonlinear kernels is required
to implement both MLSD-based receivers. Let R = T/Ts be the oversampling
factor. Based on the polyphase filter representation of the oversampled channel
response, the received samples can be expressed as

r(i)n =
∑

k

akf
(i)
0 [n− k] +

∑

k

N−1
∑

m=1

akak−mf (i)
m [n− k] + z(i)n , (20)
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where r
(i)
n = r(nT + iTs), z

(i)
n = z(nT + iTs), and f

(i)
m [n] = fm(nT + iTs) with

i = 0, ..., R− 1. Notice that there are R different symbol rate sequences r
(i)
n .

Since symbols ak are assumed zero-mean and i.i.d. real random variables with
σ2
a = E

{

|ak|
2
}

, we can verify that

f
(i)
0 [k] =

1

σ2
a

E{r(i)n an−k},

f (i)
m [k] =

1

σ4
a

E{r(i)n an−kan−k−m},

i = 0, ..., R− 1. (21)

From (21), a simple estimator of the oversampled linear and nonlinear kernels
can be implemented with an averaging filter as follows4:

f̂
(i)
0 [k] =

1

σ2
aLA

n0+LA−1
∑

n=n0

r(i)n ân−k,

f̂ (i)
m [k] =

1

σ4
aLA

n0+LA−1
∑

n=n0

r(i)n ân−kân−k−m,

(22)

where LA is the length of the averaging filter, n0 is an arbitrary time index,
and âk is the detected symbol. The accuracy of the channel estimation given by
(22) depends on the precision of the decisions âk, the length of the averaging
filter LA, and the channel noise power. We consider that decisions provided by
the forward error correction (FEC) decoder are available, therefore the effect of
decision errors can be neglected (i.e., âk = ak). We highlight that this assumption
is still valid if pre-FEC decisions are used as a result of the low bit error rates
experienced in this link (e.g., ∼ 10−3). From the above, we conclude that the
goodness of the estimates (22) shall mainly depend on the filter length LA and
the channel noise power.

The precision of (22) improves as the value of LA increases. On the other
hand, the maximum value of LA shall be imposed by the speed of temporal
variations of the fiber optic channel. As a result of its dependence on stress
and vibrations, as well as on random changes in the state of polarization of the
laser, PMD is nonstationary. Fluctuations with a time scale of a hundreds of
microseconds have been considered in previous works (e.g., [18]). Therefore, the
response time of channel estimation algorithms for PMD mitigation must be less
than 1 ms (in practice a response time less than 100 µs is required [15]). This
imposes, e.g., that the bandwidth of the averaging filter (∼ 1/(4LAT )) should
be & 20 KHz in order to efficiently track the channel variation.

4 In order to improve the channel tracking capability, an efficient implementation
of the channel estimator with the well-known LMS algorithm may be preferred.
Nevertheless, the objective is to shed light on the impact of imperfect knowledge
of the fiber dispersion on the orthogonalized Volterra model. Therefore, practical
aspects of the receiver architecture (e.g., buffers, number of taps of the WF, finite
precision arithmetic effects, etc.) are not considered.
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Fig. 4. (A) Penalty of SNR caused by imperfect channel estimation versus length of
the averaging filter, and (B) the bandwidth of the averaging filter.

The received signal seen by an OS-MLSD receiver in the presence of imperfect
knowledge of the channel dispersion can be expressed as

r̃(i)n =
∑

k

an−k

(

f
(i)
0 [k] +

N−1
∑

m=1

an−k−mf (i)
m [k]

)

+z(i)n +ẑ(i)n = s(i)n +z(i)n +ẑ(i)n (23)

where s
(i)
n = s(nT + iTs), ẑ

(i)
n = ŝ(nT + iTs)−s(nT + iTs) is the estimation error

component, while ŝ(nT + iTs) is the synthesized signal obtained from (22).
Figure 4-A shows a first approximation of the SNR penalty caused by the

imperfect channel estimation as a function of LA, obtained from computer sim-
ulations. We consider 1/T = 10 GHz, R = 16, and the fiber link with L = 700
km, as used in Fig. 3-B. The approximate SNR penalty caused by an imperfect
channel estimation is then computed as

∆SNR =
σ2
z + σ2

ẑ

σ2
z

, (24)

where σ2
z is the channel noise power required to achieve a BER = 10−3 with

an unconstrained complexity OS-MLSD receiver, and σ2
ẑ is the variance of the

estimation error component5. Notice that the penalty is ∼ 0.4 dB for LA = 105.
This value of LA represents a BW of ∼ 1/(4LAT ) = 25 KHz (see Fig. 4-B).
Assuming that the estimation error is white Gaussian noise, with power σ2

ẑ ,
from Fig. 4-A we infer that the SNR penalty caused by an imperfect channel
knowledge in OS-MLSD receivers with LA = 105 should be . ∆SNR ∼ 0.4 dB.

On the other hand, Fig. 5 depicts the SNR penalty at BER = 10−3 versus
the number of states of the VD with L = 700 km. In this case the performance is
estimated considering the missmatched ST-WMF and VD receivers, which are

5 The mean penalty of 20 runs with different seeds of the random number generator
is presented.
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Fig. 5. OSNR penalty at BER = 10−3 versus number of states of the VD for L = 700
km.

designed according to {f̂n(t)}
N−1
n=0 , instead of {fn(t)}

N−1
n=0 . The error probability

is computed as described in [17]. We present results with perfect knowledge of
the fiber dispersion (denoted as LA = ∞), and for imperfect channel estimation
with LA = 105. We see that the mean penalty caused by inaccuracies of channel
estimation agrees with that expected from Fig. 4 with LA = 105 (i.e., ∼ 0.14
dB < ∆SNR ∼ 0.4 dB). Furthermore, we observe that the impact of imperfect
channel knowledge on the performance is similar in both MLSD receivers (i.e.,
∼ 0.14 dB and 0.18 dB for OS and ST-WMF, respectively). This result can be

understood from the fact that the filters h∗

0(−t) and m
(0)
k are computed from the

samples of the estimated linear kernel f̂0(t). Taking into account that the energy
of the linear component is significantly higher than the nonlinear kernels [16]
due to the spatial compression property, an accurate estimation of h0(t) can be
achieved for the channel considered. Then, we infer that the energy loss of the
signal component at the output of m̂0(t) will be small. Therefore, and based on
eq. (23), notice that the performance of OS-MLSD and ST-WMF-MLSD with
P = 1 should degrade in a similar way.

5 Conclusions

We have introduced and analyzed a novel MLSD structure for nonlinear disper-
sive channels, the ST-WMF-MLSD. A procedure to maximize the spatial com-
pression of ST-WMF-MLSD has been also proposed, and its benefits have been
demonstrated by computer simulations. Performance degradation caused by im-
perfect channel knowledge has been analyzed. Simulation results have shown
the excellent robustness of ST-WMF-MLSD to imperfect channel knowledge.
These results make the ST-WMF-MLSD an architecture to be considered for
high speed and high performance applications over dispersive NLCs.
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