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counted criteria, when the action space is assumed to be Borel and the
action space to be compact.
With this new way of defining the value of a policy, we show existence
of Markov deterministic optimal policies in the finite-horizon case, and
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deterministic policies.
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1 Introduction

In this work we analyse the existence of optimal strategies and value functions
for discrete-time stochastic control models, Markov Decision Processes (MDP)
under two related discounted criteria, in which the discount factors varies stage
to stage.

MDP theory have been widely developed during the last sixty years, and
the advances and applications have been synthesized in well-known books in the
area. In [4, 8], the general state and action spaces case is studied, while in [2, 5,
7] the spaces are assumed to be finite. Besides in [7, 8], several examples, under
their respective assumptions, can be found.

A common feature in the treatment presented through these references is the
assumption that the discount factor remains constant at the different stages.
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This fact significantly simplifies the analysis. In order to obtain a solution, one
can directly apply the Banach Contraction Principle, if the immediate return
function is bounded.

Criteria with variable discount factors are more realistic from the behavioural
viewpoint of the decision makers. Heals [3] provides a complete economic treat-
ment of the subject, analysing different ways of contemplate future reward and
costs, providing social and psychological motivations. Examples of control prob-
lems giving economic and environmental interests are presented in [1, 9].

The basic idea behind Intertemporal Choice is the assumption that, between
present and future consumptions, agents show preferences (or assigns greater
ratings) for present ones, and this tendency empirically shows to be decreasing
in time. In a similar way, companies assign greater preferences for present rewards
in front of feature ones, with a decreasing assessment in time. See, for instance,
[6, Chapter 20]

Although the range of results is large, it appears that the literature does not
cover the case that is the subject of this paper.

The objective of the present work is to provide a formal framework to variable
discounted MDP. We assume Borel state and compact action spaces.

This paper is organized as follows. In Section 2, we present the MDP model,
introduce its notation and state the assumptions on the data of the problem. In
Section 3 we present the performance criteria.

The results obtained are presented in Sections 4 and 5, for finite-horizon
and infinite horizon problems, respectively.

Finally, Section 6 is devoted to the concluding remarks.

2 Preliminaries and Notations

We consider a Markov decision model of the form

M := (S,A, {As : s ∈ S}, {Qt}, {rt}, {λt})

where S is the state space and A is the action space. For each s ∈ S, we define
the set As as the set of actions available in state s. In such a way A =

⋃
s∈S As.

We put K = {(s, a) : s ∈ S, a ∈ As}. The transition laws Qt are stochastic
kernels on S given K and the reward functions rt are real-valued on K.

We propose a sequence of discount factors {λt}t, to be applied at the different
decision epochs. We shall assume no discount factor is applied at the moment
when the first decision has to be taken.

If at the time of the t-th decision epoch the state of the system is st = s and
the chosen action is at = a ∈ As, an instantaneous reward ratt (st) is received,
and the system move to a new state st+1 according the probability distribution
Qatt (st+1|st).
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We will note, for Borel sets X and Y , with P(X) to the family of probability
measures on X endowed with the weak topology, and with P(X|Y ) to the family
of transition probabilities from Y to X.

An admissible history of the process up to the t-th decision epoch is a se-
quence consisting of states sk and actions ak ∈ Ask , with k = 0, ..., t− 1, and a
final state st. That is, an element of the form ht = (s0, a0, ..., st−1, at−1, st). We
define the spaces of admissible histories up to stage t by Ht.

A Markov policy is a sequence π = {πt} of stochastic kernels πt ∈ P(A|Ht)
such that for every ht ∈ Ht and t ∈ N, πt(Ast |ht) = πt(Ast |st), where for Borel
subsets of As, πt(B|st) represents the probability of choose an action on B, at
time t and state st. We shall say that a distribution πt is deterministic if there
exists a ∈ Ast , such that πt(·|st) = δa(·) (i.e., it assigns probability 1 to action
a), and we will note πt = ft. A pure Markov policy is a Markov policy π = {ft}
formed by deterministic distributions.

A Markov policy π = {πt} is stationary when there exists f ∈ P(A|S) (de-
terministic or not), such that f(s) ∈ P(As) and πt = f for all s ∈ S and t ∈ N.
In this case, we identify π with f , i.e., π = {f, f, ...}. If f is in particular, for
any state, concentrated in some action, f is a pure stationary policy.

We denote by Π the set of all Markov policies and by Πstat the set of all
stationary policies.

For each strategy π ∈ Π, and any initial state s, there exists a unique prob-
ability measure Pπs and stochastic processes {St} and {At}, where St and At
represent the state and the action at the t-th decision epoch. See [4, Appendix
C, Proposition C.10]

Eπs denotes the expectation operator with respect Pπs .

For any given function h : K → R and any ξ ∈ P(As) we will write hξ(s)
instead of hξ(s)(s), and it will be

hξ(s) =

∫
As
ha(s)ξ(da)

whenever the integral is well defined.

3 Performance Criteria

Through this work, in order to evaluate the performance of policies, we use a
total variable discounted criterion.

We assume a discount factor λt at the (t − 1)-th decision epoch. More pre-
cisely, for N = 1, s ∈ S and π ∈ Π, we will evaluate

V πN (s) := Eπs

[
rA0
0 (s) +

N−1∑
t=1

λt−1r
At
t (St) + λN−1rN (SN )

]
.
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In the rest of this work we shall use the convention that variables with neg-
ative indices, when multiplying, will be taken as 1. With this,

V πN (s) = Eπs

[
N−1∑
t=0

λt−1r
At
t (St) + λN−1rN (SN )

]
.

The infinite horizon performance will be analysed through

V π(s) := Eπs

[ ∞∑
t=0

λt−1r
At
t (St)

]
.

The objective of the controller, in the infinite horizon problem, is to find
(when it exists) a policy that solves, given the current state s:

π(s) ∈ arg max
π

V π(s) .

Such a strategy π∗ ∈ Π is said to be optimal, and the function

V ∗(s) = sup
π∈Π

V π(s)

is the optimal value function. Likewise for the finite-horizon problems, noting

V ∗N (s) = sup
π∈Π

V πN (s) .

4 The Finite-Horizon Problem

In the remains of the work we consider the next general assumption.

Assumption 1

(a) The state space S is a Borel subset of a complete and separable metric space.
(b) For each s ∈ S, the set As is compact.
(c) For s ∈ S, and t = 0, 1, ..., N − 1, r·t(s), is upper semicontinuous on As.
(d) |rat (s)| 5Mt and |rN (s)| 5MN , for any s ∈ S, a ∈ As and t = 0, 1, ..., N−1.
(e) For (s, a) ∈ K and each bounded measurable function v defined on S, the

application a 7→
∫
v(z)Qan(dz|s) is continuous on As, for any n ∈ N.

For finite state and action spaces, Assumption 1 trivially holds.

Remark 1 Our idea to tackle the problem with variable discount factors is in-
spired in the dynamic programming approach on constant discounted models,
which results a particular case of our, taking λτ = (α)τ .

Indeed, the finite-horizon problem can be solved by repeated application of
operators of the form (defined where it should be)

(Tv)(s) = sup
a∈As

{
rat (s) + α

∫
S
v(z)Qat (dz|s)

}
,
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and noting that the factor α results in the quotients of two successive discounts in
the sequence, (i.e. α = ατ

ατ−1 ), in Theorem 1 we propose dynamic programming

operators, actualizing the future, at stage t, with the factor λτ
λτ−1

.

Similar modifications will be done in Section 5, when dealing with the infi-
nite horizon problem.

Although by the economic motivations, it is reasonable to ask the discount
factors λt to be smaller than 1, this assumption is not necessary to assure the
well definition of the values in the finite-horizon analysis, neither to proof the
next result.

Theorem 1. Let V0, V1,...,VN be the functions on S defined by the recursion

VN (s) = rN (s) ,

Vn(s) = sup
a∈As

{
ran(s) +

λn
λn−1

∫
S
Vn+1(z)Qan(dz|s)

}
, n = N−1, N−2, ..., 0 . (1)

Let f∗n be a function defined on S, where for each s ∈ S, f∗n(s) ∈ As attains the
maximum at (1). Then, the functions f∗n are well defined, the Markov strategy
π∗ = {f∗0 , f∗1 , ..., f∗N−1} is optimal, and the value function V ∗N equals V0.

Proof. Let π = {πt} be an arbitrary policy and let V πN,n(s) the corresponding
performance from time n to the terminal time N , given the state sn = s at time
n, i.e., if n = 0, 1, . . . , N − 1. That is, by definition,

V πN,n(s) := Eπs

[
rAnn (Sn) +

1

λn−1

(
N−1∑
t=n+1

λt−1r
At
t (St) + λN−1rN (SN )

)]
,

V πN,N (s) := Eπs [rN (SN )] = rN (s) .

In particular, note that

V πN (s) = V πN,0(s) .

To prove the theorem, will shall show that, for all s ∈ S and n = 0, 1, . . . , N ,

V πN,n(s) 5 Vn(s) , (2)

with equality if π = π∗:
V π

∗

N,n(s) = Vn(s) . (3)

For n = 0, this inequality reads, for any s ∈ S,

V πN (s) 5 V ∗N (s) = V π
∗

N (s) ,

which yields the desired conclusion.

To obtain the proposed inequalities, we proceed by backward induction.
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Observe first that for n = N ,

V πN,N (s) = VN (s) = rN (s) . (4)

Let us now assume that for some n = N − 1, . . . , 0, and any s ∈ S,

V πN,n+1(s) 5 Vn+1(s) . (5)

Then,

V πN,n(s) = Eπs

[
rAnn (Sn) +

1

λn−1

(
N−1∑
t=n+1

λt−1r
At
t (St) + λN−1rN (SN )

)]

= Eπs

[
rAnn (Sn) +

λn
λn−1

(
N−1∑
t=n+1

λt−1
λn

rAtt (St) +
λN−1
λn

rN (SN )

)]

=

∫
As

[
ran(s) +

λn
λn−1

∫
S
V πN,n+1(z) Qan(dz|s)

]
πn(da|s) .

Hence, for any s ∈ S,

V πN,n(s) 5
∫
As

[
ran(s) +

λn
λn−1

∫
S
Vn+1(z) Qan(dz|s)

]
πn(da|s)

5 sup
a∈As

{
ran(s) +

λn
λn−1

∫
S
Vn+1(z)Qan(dz|s)

}
= Vn(s) , (6)

which proves (2).

The existence of the functions f∗n stated follows by Assumption 1. Indeed,
by (d), the functions Vn+1 are bounded, and by (c) and (e), for any s ∈ S, the
application

a 7→ ran(s) +
λn
λn−1

∫
S
Vn+1Q

a
n(dz|s)

results upper semicontinuous on As. Finally, part (b) implies the existence of
the maximizing action.

If equality holds in (5), with π = π∗, then (6) becomes equality, for any t.
Since equality holds in (4), this implies (3) and then π∗ is the optimal policy.

Q.E .D.

5 The Infinite Horizon Problem

In this section we shall work under the next additional assumption, that assure
the well definition of the value associated to a policy.

Assumption 2
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(a) The functions rt are uniformly bounded. That is, |rat (s)| 5M for all s ∈ S,
a ∈ As and t ∈ N.

(b) There exists a positive constant ρ < 1 such that, for any t, λt 5 ρ λt−1, for
t = 0.

Since Assumption 2 (b) implies λt 5 ρt+1, by easy calculations, it can be
verified that for any π ∈ Π, V π is a bounded function and it holds ||V π||∞ 5
M
1−ρ . In consequence, there exists the value function V ∗, bounded by M

1−ρ .

The classical approach to characterize value functions and optimal policies
in discounted MDP consists in the successive application of appropriate dy-
namic programming operators, which have sense for stationary models. See, for
instance, [8, Chapter 5], or [4, Chapter 4].

In order to deal with the infinite horizon non-stationary variable discounted
original model, we consider a related stationary one, incorporating the time
parameter to the state of the system. A similar construction, in the context of
non-stationary finite-horizon Markov games, were proposed in [10, Section 5].

Let us note that, if our aim is to adapt the known constant discount factor
proofs to our case, this transformation is even necessary for stationary reward
functions and transition probabilities, given the non-stationary character of the
discounts.

We shall prove results on this enlarged model, where discounts depends ar-
tificially on the state. The relations between policies and values in both models
will be pointed in Remarks 2 and 3.

Formalizing, let us consider

M̃ := (S̃, Ã, {Ãs̃ : s̃ ∈ S̃}, Q̃, r̃, {λ̃s̃, s̃ ∈ S̃})

where we put

– S̃ = S × N0

– Ã = A
– Ã(s,τ) = As for any (s, τ) ∈ S̃
– r̃a(s, τ) = raτ (s), for (s, τ) ∈ S̃, a ∈ Ãs.

– Q̃a(z, τ ′|s, τ) =

{
Qa(z|s) if τ ′ = τ + 1

0 otherwise
for (s, τ), (z, τ ′) ∈ S̃, a ∈ Ãs.

– λ̃(s,τ) = λτ , for each (s, τ) ∈ S̃.

Remark 2 There is a one to one correspondence between stationary policies
in the new model M̃ and Markov policies in the original M. Moreover, if f̃ is
stationary in M̃, the corresponding Markov policy in M is given by π = {fτ},
where fτ (s) = f̃(s, τ).

We shall note Π̃ and Π̃stat to the set of Markov and stationary policies in
M̃.
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For π̃ ∈ Π̃ and (s, τ) ∈ S̃ there exists Pπ̃(s,τ) a probability measure, with

Eπ̃(s,τ) its consequent expectation operator. Let {S̃t} be the stochastic process on

S̃ of the state system at time t, i.e., S̃t = (St, t).

Since the action spaces are not essentially modified, we skip the tildes in the
notation related to these parameters.

At this point it is worth alerting the reader about the notation utilized in the
rest of the section. We shall write λ̃S̃t or λ̃(St,t) to the random variables making

up the discount stochastic process, and λ̃s̃t or λ̃(st,t), to its realisations, which,
by construction, equals λt.

In this enlarged model we define the value associated to an initial state
and a fixed policy, by the performance of the policy in the original problem,
from time τ , given the state sτ = s at time τ . That is, for (s, τ) ∈ S̃ and
π̃ = {f̃0, f̃1, ...} ∈ Π̃,

Ṽ π̃(s, τ) :=
1

λ̃(s,τ−1)
Eπ̃(s,τ)

[
λ̃(s,τ−1)r̃

Aτ (s, τ) +
∞∑

t=τ+1

λ̃S̃t−1
r̃At(S̃t)

]

= r̃f̃τ (s, τ) + Eπ̃(s,τ)

[ ∞∑
t=τ+1

λ̃S̃t−1

λ̃(s,τ−1)
r̃At(S̃t)

]
.

Here again, the objective will be to find polices π̃, such that at state (s, τ) ∈ S̃,
solve

π̃(s, τ) ∈ arg max
π̃

Ṽ π̃(s, τ) .

Remark 3 The values Ṽ ∗(s, τ) represents the optimal expected reward for the
infinite horizon variable discounted non-stationary problem M starting at time
τ in state s. In particular, for each s ∈ S, it is Ṽ ∗(s, 0) = V ∗(s).

We will note with B(S̃) to the bounded function space defined on S̃, which
results a Banach space (normed and complete) with the sup norm || · ||∞.

Again, inspired as in Remark 1, on B(S̃) we define the new dynamic pro-
gramming operators, given f̃ ∈ Π̃stat

(T f̃v)(s, τ) = r̃f̃ (s, τ) +
λ̃(s,τ)

λ̃(s,τ−1)

∫
S̃
v(z, τ ′)Q̃f̃ (dz, τ ′|s, τ) ,

and

(Tv)(s, τ) = sup
a∈As

{
r̃a(s, τ) +

λ̃(s,τ)

λ̃(s,τ−1)

∫
S̃
v(z, τ ′)Q̃a(dz, τ ′|s, τ)

}
.

Observe that if Assumption 2 holds, T maps B(S̃) into itself. Indeed, if
||v||∞ 5 C, then it is verified ||Tv||∞ 5M + ρ C. The same consideration holds
for the operators T f .
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Lemma 1 T and T f̃ are monotone and contractive mappings on B(S̃), of mod-
ulus ρ.

Proof. To proof monotonicity, let be u,w ∈ B(S̃), with u 5 w. Then, for all
(s, τ) ∈ S̃,

(T f̃u)(s, τ) =

∫
As
r̃a(s, τ) +

λ̃(s,τ)

λ̃(s,τ−1)

∫
S̃
u(z, τ ′)Q̃a(dz, τ ′|s, τ)f̃(da|s, τ)

5
∫
As
r̃a(s, τ) +

λ̃(s,τ)

λ̃(s,τ−1)

∫
S̃
w(z, τ ′)Q̃a(dz, τ ′|s, τ))f̃(da|s, τ)

= (T f̃w)(s, τ) .

Besides, if κ > 0, since, for all (s, τ) ∈ S̃,
λ̃(s,τ)

λ̃(s,τ−1)
5 ρ,

(T f̃ (u+ κ))(s, τ) =

∫
As
r̃a(s, τ) +

λ̃(s,τ)

λ̃(s,τ−1)

∫
S̃

[u(z, τ ′) + κ]Q̃a(dz, τ ′|s, τ)f̃(da|s, τ)

= (T f̃u)(s, τ) + κ
λ̃(s,τ)

λ̃(s,τ−1)
5 (T f̃u)(s, τ) + κ ρ .

Now, for u,w ∈ B(S̃), since u 5 w+ ||u−w||∞, by the monotonicity property
and the previous observation,

T f̃u 5 T f̃w + ρ ||u− w||∞ .

Interchanging the functions u and w,

T f̃w 5 T f̃u+ ρ ||u− w||∞ ,

which implies

||T f̃u− T f̃w||∞ 5 ρ ||u− w||∞

and T f̃ is contractive of modulus ρ.

Using similar arguments, it can be shown that T is a monotone and contrac-
tive mapping of modulus ρ on B(S̃).

Q.E .D.

By Banach’s Fixed Point Theorem, applied to the contractive operators T f̃

and T defined on (B(S̃), || · ||∞) (indeed complete), there exist unique bounded

functions vf̃ and v, satisfying T f̃vf̃ = vf̃ and Tv = v.

Lemma 2 The value of a stationary strategy f̃ ∈ Π̃stat, Ṽ
f̃ is the unique fixed

point of T f̃ on B(S̃).
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Proof. In view of Lemma 1 and its following observation, it is sufficient to

prove that Ṽ f̃ is a fixed point of T f̃ , which follows with the next calculations,
for (s, τ) ∈ S̃, in which we shall use the constant character of the discount on
the state s. Since λ̃(s,τ) = λτ for all s ∈ S, the random variables λ̃S̃τ equal the
values λτ .

Ṽ f̃ (s, τ) = r̃f̃ (s, τ) + Ef̃(s,τ)

[ ∞∑
t=τ+1

λ̃S̃t−1

λ̃(s,τ−1)
r̃At(S̃t)

]

= r̃f̃ (s, τ) + Ef̃(s,τ)

[
λ̃S̃τ

λ̃(s,τ−1)
r̃Aτ+1(S̃τ+1) +

∞∑
t=τ+2

λ̃S̃t−1

λ̃(s,τ−1)
r̃At(S̃t)

]

= r̃f̃ (s, τ) +
λ̃(s,τ)

λ̃(s,τ−1)
Ef̃(s,τ)

[
r̃Aτ+1(S̃τ+1) +

∞∑
t=τ+2

λS̃t−1

λ̃S̃τ
r̃At(S̃t)

]

= r̃f̃ (s, τ) +
λ̃(s,τ)

λ̃(s,τ−1)
Ef̃(s,τ)

[
V f̃ (S̃τ+1)

]
= (T f̃V f̃ )(s, τ)

Q.E .D.

Theorem 2. The value function Ṽ ∗ is the unique bounded function on S̃ satis-
fying the optimality equation v = Tv. That is, for any (s, t) ∈ S̃,

Ṽ ∗(s, τ) = sup
a∈As

{
r̃a(s, τ) +

λ̃(s,τ)

λ̃(s,τ−1)

∫
S̃
Ṽ ∗(z, τ ′)Q̃a(dz, τ ′|s, τ)

}
.

Moreover, there exist stationary policies f̃∗ ∈ Π̃stat, which at each (s, τ) ∈ S̃
select an action maximizing the r.h.d. of the equation. Any strategy f̃∗ is optimal
for the infinite horizon problem, i.e.,

T f̃
∗
Ṽ ∗ = Ṽ ∗ , and Ṽ f̃

∗
= Ṽ ∗ .

Proof. By Assumption 1, parts (c) and (d), in model M̃, for any (s, τ) ∈ S̃
the application

a 7→ r̃a(s, τ) +
λ̃(s,τ)

λ̃(s,τ−1)

∫
S̃
Ṽ ∗(z, τ ′)Q̃a(dz, τ ′|s, τ)

is upper semicontinuous on As, since Ṽ ∗ is bounded on S̃.

Besides, by Assumption 1 (b), As is compact, and there exists an action
a∗s,τ = f̃∗(s, τ) ∈ As which verifies

ra
∗
s,τ (s, τ) +

λ̃(s,τ)

λ̃(s,τ−1)

∫
S̃
Ṽ ∗(z, τ ′)Q̃a

∗
s,τ (dz, τ ′|s, τ)

= sup
a∈As

{
r̃a(s, τ) +

λ̃(s,τ)

λ̃(s,τ−1)

∫
S̃
Ṽ ∗(z, τ ′)Q̃a(dz, τ ′|s, τ)

}
.
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DP for Variable Discounted MDP 11

We shall prove that any stationary strategy defined in such a way is optimal,
by proving that, for any π̃ ∈ Π̃ and (s, τ) ∈ S̃,

Ṽ π̃(s, τ) 5 Ṽ f̃
∗
(s, τ) .

For each t = 1, h̃t ∈ H̃t, a ∈ Ast , and τ = t, since at the t-th epoch of
decision, given the history h̃t, the realizations of the processes S̃k and Ak were
respectively s̃k = (sk, k) and ak, by properties of the conditional expectation we
have

Eπ̃(s,τ)
[
λ̃S̃t Ṽ

f̃∗
(S̃t+1)

∣∣h̃t, at] = λ̃s̃t Eπ̃(s,τ)
[
Ṽ f̃

∗
(S̃t+1)

∣∣h̃t, at]
= λ̃s̃t

∫
S̃
Ṽ f̃

∗
(z, τ ′)Q̃f̃t(dz, τ ′|st, t)

= λ̃st−1

[
λ̃s̃t
λ̃st−1

∫
S̃
Ṽ f̃

∗
(z, τ ′)Q̃f̃t(dz, τ ′|st, t)

+ r̃f̃t(s̃t)− r̃f̃t(s̃t)
]

5 λ̃st−1

[
Ṽ f̃

∗
(s̃t)− r̃f̃t(s̃t)

]
.

The above inequality is equivalent to

λ̃st−1
r̃f̃t(s̃t) 5 λ̃st−1

Ṽ f̃
∗
(s̃t)

− Eπ̃(s,τ)
[
λ̃S̃t Ṽ

f̃∗
(S̃t+1)

∣∣h̃t, at] . (7)

On the other hand, for t = 0, as consequence of Lemma 2, it holds

r̃a0(s) 5 Ṽ f
∗
(s)− Eπ̃(s,0)

[
λ̃(s,0)Ṽ

f∗
(S̃t+1)

]
.

Finally, for any τ ∈ N, taking expectations under policy π̃ and summing for
t = τ, ..., n the preceding inequalities we obtain a telescopic sum which conduces
to

Eπ̃(s,τ)

[
n∑
t=τ

λ̃S̃t−1
r̃At(S̃t)

]
5 λ̃(s,τ−1)V

f̃∗
(s, τ)− Eπ̃(s,τ)

[
λ̃S̃n Ṽ

f̃∗
(S̃n+1)

]
,

which gives

Eπ̃(s,τ)

[
n∑
t=τ

λ̃S̃t−1

λ̃(s,τ−1)
r̃At(S̃t)

]

5 V f̃
∗
(s, τ)− Eπ̃(s,τ)

[
λ̃S̃n

λ̃(s,τ−1)
Ṽ f̃

∗
(S̃n+1)

]
.
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Taking now n → ∞, the l.h.s. of the inequality tends to the value Ṽ π̃(s, τ),
and the second term in the r.h.s. verifies, since ρ < 1,∣∣∣∣∣Eπ̃(s,τ)

[
λ̃S̃n

λ̃(s,τ−1)
Ṽ f̃

∗
(S̃n+1)

]∣∣∣∣∣ 5
Mρn−τ

1− ρ
−→
n→∞

0 ,

and in consequence,

Ṽ π̃(s, τ) 5 Ṽ f̃
∗
(s, τ) .

The optimality of f̃∗ follows from the arbitrary character of π̃.

Q.E .D.

6 Concluding Remarks

In this work we have treated the problem of define in a precise way discounted
discrete time stochastic control models, were the discounts do not stay constant
at each stage, obtaining results in both, the finite and the infinite horizon cases.

For the finite-horizon problem, we have shown the existence of optimal deter-
ministic Markov policies and provide a recursive method that allows to obtain
the value function and optimal policies of the model.

For the infinite horizon case we incorporate the time parameter to the state
obtaining a stationary model, in which the discount varies with the state. We
define appropriate dynamic operators, and characterize the value function as its
unique bounded fixed point. We also show in this enlarged model the existence
of deterministic stationary optimal strategies. We obtain results for the origi-
nal problem noting that stationary policies in the stationary model traduces in
Markov policies in the non-stationary one.

The practical issue is currently to find algorithms of procedures to evaluate
numerically or find good approximations of the value functions for the variable
discounted infinite horizon problems, bounding efficiently the errors incurred.
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